VGN Dragonfly F1 Pro Max Review (2024)

Sensor and Performance

The VGN Dragonfly F1 Pro Max is equipped with the PixArt PAW3395. According to specifications, the 3395 is capable of up to 26,000 CPI, as well as a maximum tracking speed of 650 IPS, which equals 16.51 m/s. Out of the box, four pre-defined CPI steps are available: 400, 800, 1600, and 3200.

All testing was done on the latest firmware (V0110/V0107). As such, results obtained on earlier firmware versions may differ from those presented hereafter.

CPI Accuracy

"CPI" (short for counts per inch) describes the number of counts registered by the mouse if it is moved exactly an inch. There are several factors (firmware, mounting height of the sensor not meeting specifications, mouse feet thickness, mousing surface, among others) which may contribute to nominal CPI not matching actual CPI. It is impossible to always achieve a perfect match, but ideally, nominal and actual CPI should differ as little as possible. In this test, I'm determining whether this is the case or not. However, please keep in mind that said variance will still differ from unit to unit, so your mileage may vary.

VGN Dragonfly F1 Pro Max Review (1)

I've restricted my testing to the four most common CPI steps, which are 400, 800, 1600, and 3200. As you can see, there is no deviation at all, which is a perfect result.

Motion Delay

"Motion delay" encompasses all kinds of sensor lag. Any further sources of input delay will not be recorded in this test. The main thing I'll be looking for in this test is sensor smoothing, which describes an averaging of motion data across several capture frames in order to reduce jitter at higher CPI values, increasing motion delay along with it. The goal here is to have as little smoothing as possible. As there is no way to accurately measure motion delay absolutely without special equipment, it is done by comparison with a control subject that has been determined to have consistent and low motion delay. In this case, the control subject is a Logitech G403, whose PMW3366 sensor has no visible smoothing across the entire CPI range. Note that the G403 is moved first and thus receives a slight head start.

Wired testing

First, I'm looking at two xCounts plots—generated at 1600 and 26,000 CPI—to quickly gauge whether there is any smoothing, which would be indicated by any visible "kinks." Neither plot shows any kinks, strongly suggesting there not being any smoothing across the entire CPI range.

The Dragonfly F1 Pro Max also allows enabling MotionSync, which effectively synchronizes SPI reads with USB polls, resulting in very low SPI timing jitter as seen above.


In order to determine motion delay, I'm looking at xSum plots generated at 1600 and 26,000 CPI, both without (first row) and with (second row) MotionSync. The line further to the left denotes the sensor with less motion delay. Without MotionSync, there is no motion delay differential at 1600 and 26,000 CPI. With MotionSync, a motion delay differential of roughly 0.5 ms is added.

Wireless testing

Unlike in wired mode, which defaults to corded mode, the sensor run mode can be modified in wireless mode. LP mode (first plot) displays slightly higher SPI timing jitter than HP mode (second plot).

Upon enabling MotionSync, SPI timing is tightened to a similar degree in both instances, although LP mode displays a reproducible, non-polling related outlier at the onset of motion, which is not present in HP mode.


1600 CPI both without (first row) and with (second row) MotionSync is tested. Without MotionSync, a motion delay differential of roughly 0.75 ms can be measured at 1600 CPI, both in LP mode (first plot) and HP mode (second plot). With MotionSync, a motion delay differential of roughly 0.5 ms is added once again.

Speed-related Accuracy Variance (SRAV)

What people typically mean when they talk about "acceleration" is speed-related accuracy variance (SRAV for short). It's not about the mouse having a set amount of inherent positive or negative acceleration, but about the cursor not traveling the same distance if the mouse is moved the same physical distance at different speeds. The easiest way to test this is by comparison with a control subject that is known to have very low SRAV, which in this case is the G403. As you can see from the plot, no displacement between the two cursor paths can be observed, which confirms that SRAV is very low.

Perfect Control Speed

Perfect Control Speed (or PCS for short) is the maximum speed up to which the mouse and its sensor can be moved without the sensor malfunctioning in any way. I've only managed to hit a measly 5 m/s, which is within the proclaimed PCS range and results in no observable sign of the sensor malfunctioning.

Polling Rate Stability

Considering the Dragonfly F1 Pro Max is usable as a regular wired mouse as well, I'll be testing polling rate stability for both wired and wireless use.

Wired testing


All of the available polling rates (125, 250, 500, and 1000 Hz) look nice and stable.

Wireless testing
For wired mice, polling rate stability merely concerns the wired connection between the mouse (SPI communication) and the USB. For wireless mice, another device that needs to be kept in sync between the first two is added to the mix: the wireless dongle/wireless receiver. I'm unable to measure all stages of the entire end-to-end signal chain individually, so testing polling-rate stability at the endpoint (the USB) has to suffice here.

First, I'm testing whether SPI, wireless, and USB communication are synchronized. Any of these being out of sync would be indicated by at least one 2 ms report, which would be the result of any desynchronization drift accumulated over time. I'm unable to detect any periodic off-period polls that would be indicative of a desynchronization drift.


Second, I'm testing the general polling-rate stability of the individual polling rates in wireless mode. Running the Dragonfly F1 Pro Max at a lower polling rate can have the benefit of extending battery life. With the exception of 1000 Hz, all polling rates display severe instability.

Paint Test

This test is used to indicate any potential issues with angle snapping (non-native straightening of linear motion) and jitter, along with any sensor lens rattle. As you can see, no issues with angle snapping can be observed. No jitter is visible at 1600 CPI. 26,000 CPI with ripple control disabled (second row) shows major jitter, which is only marginally lessened by enabling ripple control (third row). Lastly, there is no sensor lens movement.

Lift-off Distance

The Dragonfly F1 Pro Max offers two pre-defined LOD levels. At the "1 mm" setting, the sensor does not track at a height of 1 DVD (<1.2 mm). Using the "2 mm" setting, the sensor does track at a height of 1 DVD (1.2 mm<x<2.4 mm, with x being LOD height), but not at a height of 2 DVDs. Keep in mind that LOD may vary slightly depending on the mousing surface (pad) it is being used on.

Click Latency

VGN Dragonfly F1 Pro Max Review (30)

In most computer mice, debouncing is required to avoid double clicks, slam-clicks, or other unintended effects of switch bouncing. Debouncing typically adds a delay, which, along with any potential processing delay, shall be referred to as click latency. In order to measure click latency, the mouse has been interfaced with an NVIDIA LDAT (Latency Display Analysis Tool). Many thanks go to NVIDIA for providing an LDAT device. More specifically, the LDAT measures the time between the electrical activation of the left main button and the OS receiving the button-down message. Unless noted otherwise, the values presented in the graph refer to the lowest click latency possible on the mouse in question. If a comparison mouse is capable of both wired and wireless operation, only the result for wireless (2.4 GHz) operation will be listed.

In wired mode and using a debounce time of 0 ms, click latency has been measured to be roughly 1.5 ms, with standard deviation being 0.17 ms. In wired mode and using a debounce time of 1 ms, click latency has been measured to be roughly 2.5 ms, with standard deviation being 0.22 ms. In wireless mode and using a debounce time of 0 ms, click latency has been measured to be roughly 2.4 ms, with standard deviation being 0.24 ms. Lastly, in wireless mode and using a debounce time of 1 ms, click latency has been measured to be roughly 3.4 ms, with standard deviation being 0.20 ms. Scaling is linear.

The main button switches were measured to be running at 2.0 V. I'm not aware of the voltage specifications of the Kailh GM 8.0 (80 M) switches, but find this voltage to be rather low.

VGN Dragonfly F1 Pro Max Review (2024)

FAQs

What is the difference between VGN F1 Pro and Pro Max? ›

The F1 Pro is equipped with Nordic 52833 while the flagship F1 Pro Max houses the Nordic 52840 chipset. They offer excellent performance with fast and strong signal processing and are more power efficient. VGN Dragonfly F1 Pro and F1 Pro Max feature VGN's self-developed SmartSpeed transmission technology.

What is the polling rate of the VGN Dragonfly F1 Pro? ›

VGN Dragonfly F1 Pro and F1 Pro Max feature VGN's self-developed SmartSpeed transmission technology. It enables a high-speed 4000Hz Polling rate ensuring quicker trigger response with ultra-low latency, stutter-free smooth connection, and improves the battery endurance as well.

Which is better pro or max? ›

If you're someone who prefers a smaller device that is easier to use one-handed, then the iPhone 15 Pro is the best choice. If you want a larger screen, a bigger battery, and a better zoom lens, then the iPhone 15 Pro Max is the better option. Price is a major consideration as well.

How can you tell the difference between Pro and Pro Max? ›

Of course, the iPhone 13 Pro Max is just as advanced and powerful as the iPhone 13 Pro. However, the iPhone 13 Pro Max differs from the Pro version when it comes to size. The Pro Max has a larger 6.7-inch screen compared to the 6.1-inch screen of the iPhone 13 Pro and base model iPhone 13.

Does the VGN Dragonfly F1 have Bluetooth? ›

Number of Buttons: 5. Package: Yes. Interface Type: USB. Type: Bluetooth Wireless.

Is 125 polling rate enough? ›

Starting at the lower spectrum, a 125Hz polling rate translates to the mouse's position being updated every 8 milliseconds. This rate, while modest, suffices for routine computing tasks where split- second timing is not a critical factor.

Is 250 polling rate enough? ›

In general, wherever rapid mouse movements are important, the polling rate should be as high as possible. Meanwhile mice used for office tasks or general surfing can operate perfectly well at 125 Hz or 250 Hz. In such activities a millisecond is not significant.

Is there a difference between the Pro and Pro Max camera? ›

The only appreciable differences between the iPhone 15 Pro and Pro Max are the screen size and which telephoto camera you get, so those should be your main deciding factors. Even at a distance in lower light situations I found the 120mm cameras image stabilization effective.

What is the difference between F1 and F1 pro? ›

F1 TV is Formula 1's official subscription video service. There are two tiers: F1 TV Pro provides full, live sessions with no commercial breaks. It also allows you to switch between the live feed and any of the 20 cameras onboard the cars.

What is the battery difference between Pro and Pro Max? ›

Circling back to the 'more is more' narrative, the 15 Pro Max's battery capacity of 4,441mAh does promise it an edge in endurance over the 15 Pro's 3,274mAh cell - it's a 36-ish percent advantage that overcompensates for that 20% larger screen.

Top Articles
Allison Transmission Fault Code SPN 2003 FMI 31
What Is And How To Fix Code SPN 4364 FMI 18 (FMI 1, FMI 31)
Poe T4 Aisling
Tattoo Shops Lansing Il
Dairy Queen Lobby Hours
Shoe Game Lit Svg
Danielle Moodie-Mills Net Worth
Danatar Gym
Meer klaarheid bij toewijzing rechter
Sissy Transformation Guide | Venus Sissy Training
Craigslist Chautauqua Ny
Www.paystubportal.com/7-11 Login
Taylor Swift Seating Chart Nashville
Citymd West 146Th Urgent Care - Nyc Photos
Shreveport Active 911
Sony E 18-200mm F3.5-6.3 OSS LE Review
Apne Tv Co Com
Amazing deals for DKoldies on Goodshop!
Bing Chilling Words Romanized
Www.publicsurplus.com Motor Pool
Amortization Calculator
The BEST Soft and Chewy Sugar Cookie Recipe
Directions To Nearest T Mobile Store
Kabob-House-Spokane Photos
4 Methods to Fix “Vortex Mods Cannot Be Deployed” Issue - MiniTool Partition Wizard
Giantbodybuilder.com
Remnants of Filth: Yuwu (Novel) Vol. 4
HP PARTSURFER - spare part search portal
Pdx Weather Noaa
25Cc To Tbsp
Grand Teton Pellet Stove Control Board
2012 Street Glide Blue Book Value
آدرس جدید بند موویز
Help with your flower delivery - Don's Florist & Gift Inc.
Etowah County Sheriff Dept
Best Workers Compensation Lawyer Hill & Moin
Culver's of Whitewater, WI - W Main St
MSD Animal Health Hub: Nobivac® Rabies Q & A
Davis Fire Friday live updates: Community meeting set for 7 p.m. with Lombardo
Squalicum Family Medicine
Leland Westerlund
Enter The Gungeon Gunther
Ronnie Mcnu*t Uncensored
Ewwwww Gif
Lux Funeral New Braunfels
Metra Union Pacific West Schedule
Vrca File Converter
Craigslist Charlestown Indiana
Predator revo radial owners
Guidance | GreenStar™ 3 2630 Display
Latest Posts
Article information

Author: Greg Kuvalis

Last Updated:

Views: 5949

Rating: 4.4 / 5 (75 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Greg Kuvalis

Birthday: 1996-12-20

Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

Phone: +68218650356656

Job: IT Representative

Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.